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we propose initial formation of azaoxametallacycle 8, followed 
by subsequent insertion of a second nitrile into the Zr—N bond 
of this molecule. Investigations designed to resolve these mech­
anistic questions are continuing and will be reported in a full paper. 
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In a mechanism proposed in these laboratories2,3 for the catalytic 
hydrodesulfurization (HDS) of thiophenes, the thiophene adsorbs 
via the entire w ring in the y5 mode.4 Thiophenes coordinated 
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in this manner in Mn and Ru complexes5 are susceptible to attack 
by hydride sources, and this reactivity is the basis for the proposed 
HDS mechanism.2,3 Another mechanism6 assumes initial coor­
dination of the thiophene through only the sulfur atom, and this 
coordination is presumed to activate the thiophene so as to give 
the H2S and C4 hydrocarbon products. However, in model com­
plexes with S-bound thiophene (T) ligands such as CpFe-
(CO)2(T)+,7 or even (C5H4CH2C4H3S)Ru(PPh3)2

+,8 where the 
thiophene is part of a cyclopentadienyl chelate ligand, the 
thiophene is so weakly coordinated to the metal that all attempted 
reactions of the ligand have simply led to thiophene dissociation 
from the metal. Thus, there is no evidence that S-coordinated 
thiophene is activated to react. In this communication, we describe 
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Figure 1. ORTEP drawing of Cp*Re(CO)2(M-T)Fe(CO)3 (2). Selected 
bond distances (A) and angles (deg) are Re-S = 2.330 (1), Re-C(H) 
= 1,884 (7), Re-C(15) = 1.883 (6), Fe-C(2) = 2.086 (6), Fe-C(3) = 
2.044 (6), Fe-C(4) = 2.048 (6), Fe-C(5) = 2.099 (6), Fe-C(Il) = 1.769 
(8), Fe-C(12) = 1.789 (7), Fe-C(13) = 1.798 (6), S-C(2) = 1.807 (6), 
S-C(5) = 1.802 (5), C(2)-C(3) = 1.458 (8), C(3)-C(4) = 1.379 (9), 
C(4)-C(5) = 1.427 (8), C(2)-S-C(5) = 82.3 (3), C(I I)-Fe-C(12) = 
91.4 (3), C(ll)-Fe-C(13) = 100.9 (3), C(12)-Fe-C(13) = 99.0 (3), 
S-Re-C(U) = 93.4 (2), S-Re-C(15) = 93.0 (2), C(14)-Re-C(15) = 
87.5 (3), C(2)-C(3)-C(4) = 110.1 (5), and C(3)-C(4)-C(5) = 110.4 
(5). 

the synthesis of an unusually stable S-bound thiophene complex 
Cp*Re(CO)2(T) (Cp* = ^-C5Me5) and its subsequent reaction 
with "Fe(CO)3" to give a dinuclear complex Cp*(CO)2Re(ju-
T)Fe(CO)3 in which the thiophene is S-bound to the Re and 
t^-bound through the four carbons to the Fe(CO)3. 

A solution of Cp*(CO)2Re(THF), prepared by UV irradiation9 

of a THF solution (120 mL) of Cp*Re(CO)3 (0.74 mmol), is 
stirred with thiophene (5.0 mL, 62 mmol) at room temperature 
for 6-8 h. After removal of the solvent in vacuo, the residue is 
chromatographed in CH2Cl2/hexanes (1:4) on neutral alumina. 
Slow evaporation of the solvent from the yellow band gives light 
yellow, air-stable crystals of Cp*(CO)2Re(T) (1) (38% yield), 
which is characterized by its elemental analyses and IR, 1H NMR, 
13C NMR, and mass spectra;10 these data support its formulation 
as a complex with an S-coordinated thiophene. Although there 
are no crystal structures of simple thiophene complexes, the sulfur 
in 1 is presumed to be pyramidal, as found in the chelated 
thiophene complex8 (C5H4CH2C4H3S)Ru(PPh3)2

+ and in several 
thiaporphyrin complexes," and the thiophene may be folded 
slightly (12-150)11 along a line from C(2) to C(5). 

When a solution of Cp*(CO)2Re(T) (1) (0.076 mmol) in THF 
(15 mL) is treated with Fe2(CO)9 (0.274 mmol) at -40 0C and 
then slowly warmed to room temperature and stirred for 20 h, 
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the solution color changes from orange-yellow to dark purple. 
Evaporation of the solution under vacuum and chromatography 
of the residue on neutral alumina in CH2Cl2/hexanes (1:4) give 
Cp*(CO)2Re(M-T)Fe(CO)3 (2) in the yellow band, which upon 
slow evaporation yields (59%) 2 as air-stable, yellow crystals, which 
were fully characterized.12 Thus, the reaction proceeds as in eq 
1. 
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An X-ray diffraction study13 shows that 2 contains a bridging 
thiophene ligand that is coordinated to the Re atom via the sulfur 
and to the Fe through the four carbons of the diene system. The 
sulfur is pyramidal as indicated by the angle (125°) between the 
Re-S vector and the vector from S to the midpoint of the line from 
C(2) to C(5). The longer distances for C(2)-C(3) (1.458 (8) A) 
and C(4)-C(5) (1.427 (8) A) as compared to that for C(3)-C(4) 
(1.379 (9) A) are often found in ?;4-l,3-diene complexes;14 this 
pattern of C-C bond distances is similar to that found in the 
S-coordinated thiophene in thiaporphyrin complexes" but is just 
the opposite of that in free thiophene, where C(2)-C(3) and 
C(4)-C(5) are shorter (1.37 A) than C(3)-C(4) (1.42 A),15 and 
that in (C5H4CH2C4H3S)Ru(PPhJ)2

+.8 The C(2)-S and C(5)-S 
distances (1.807 (6), 1.802 (5) A) are substantially longer than 
the corresponding distances (1.715 A)15 in free thiophene, and 
the C(2)-S-C(5) angle (82.3°) is much smaller than in thiophene 
(92°). The thiophene ring is folded with an angle of 36.9 ± 0.4° 
between the C(2)-C(3)-C(4)-C(5) and C(2)-S-C(5) planes. In 
general, the geometry (the fold at the C(2)-C(5) line, the long 
C-S bonds, and the small C(2)-S-C(5) angle of the thiophene) 
in 2 is different from that of free thiophene15 and the S-coordinated 
thiophene in (C5H4CH2C4H3S)Ru(PPh3)2

+8 but very similar to 
that of the ?j4-thiophene ligand in Cp*Ir(rj4-T)16 and Cp*Ir(7?4-
T-BH3) (in which the BH3 is coordinated to the sulfur).17 

It is interesting that the c(CO) values for the Cp*(CO)2Re 
group in 2 (1922, 1862 cm"1) are lower than those in 1 (1934, 
1874 cm"1), which means that the thiophene sulfur is a better 
donor to Re when the thiophene is ^-coordinated to Fe(CO)3. 
This is consistent with the previous observation16 that the thiophene 
sulfur in Cp*Ir(??4-T) is a stronger Lewis base toward BH3 than 
free thiophene or even Me2S. Presumably the rf coordination of 
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thiophene to a metal separates the diene and sulfur segments of 
the thiophene and drastically reduces the delocalization of electron 
density from the sulfur to the diene system, which makes the sulfur 
much more basic. 

In conclusion, we report herein the first example of an S-co­
ordinated thiophene undergoing reaction. In fact, it appears that 
the thiophene in 1 is activated to react with "Fe(CO)3" since 
thiophene itself does not react18 with Fe2(CO)9 under conditions 
very similar to those in eq 1. (Under more vigorous conditions, 
Fe3(CO)12 reacts with thiophene to give thiaferroles and ferroles.19) 
Thus, it is possible that on an HDS catalyst initial S adsorption 
of thiophene to a single metal site would activate the diene system 
to coordinate to a second metal. Perhaps in this bridging position 
with weakened C-S bonds, the thiophene undergoes C-S bond 
cleavage and hydrogenation. Investigations of such reactivity are 
in progress. 
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Osmium-187 is the most insensitive nucleus in NMR spec­
troscopy,1 and also for this reason until now no 5(187Os) data have 
been published except for the standard OsO4

2 and a /̂ -bridged 
binuclear complex.3 Using the indirect two- and one-dimensional 
(X,Os) NMR spectroscopy (X = 1H or 31P)4-5 we have determined 
to the best of our knowledge for the first time the 187Os chemical 
shift range, the magnitude and sign of 7(Os,X), and T1(

187Os) 
in quasitetrahedral [(?;5-cyclopentadienyl)(phosphine)2(R)]Os 
complexes.6 
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